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Momentum and angular momentum of two gravitating 
particles 

M Portilla 
Departamento de Meclnica y Astronomia, Facultad de Matematicas, Burjasot (Valencia), 
Spain 

Received 6 January 1978, in final form 6 October 1978 

Abstract. In this paper, following the method developed by Bel, Salas and Sanchez Ron to 
solve the equations of predictive mechanics, and the method by Bel and Martin to obtain the 
momentum and angular momentum of a system of particles, we obtain the accelerations, 
momentum and angular momentum for two gravitating particles to the first order in G. As 
‘criteria]’ conditions for the determination of the acceleration we have used the Lorentz 
invariant equations obtained by Havas and Goldberg. 

1. Introduction 

In order to describe the motion of N point particles within the framework of general 
relativity, we must begin with the Einstein equations: 

R,, - f Rg,, = -8d3P,,, (1.1) 

taking as tensor PWy the following expression: 

N +m 
P”“ = I p7’(7,)S‘4’(x - x i ( T i ) )  dri. 

i = l  --OD 

The equations of motion are contained in the Einstein equations, since Pr,“ = 0, and 
from this it can be deduced that the particles must describe geodesics in relation to a 
metric solution of the field equations. The problem is that we need to know the motion 
of the particles in order to solve the field equations. 

Methods of successive approximations have been used to solve the problem. The 
equations of motion of Einstein, Infeld and Hoffman are only valid for velocities small 
compared with the velocity of light. Havas and Goldberg (1962) developed a method in 
which each approximate equation of motion is Lorentz invariant and therefore valid for 
any velocity. 

Here we shall merely summarise the results of the previously mentioned work of 
Havas. It is assured that the metric tensor g,, allows for a series expansion with the 
Minkowski metric as a zero-order approximation: 

m - 
g,w = 77”U + c ng,”. (1.3) 

1 

qrr, is taken with the signature {+1 -1 -1 -1). 

0305-4470/79/071075 + 16$01.00 @ 1979 The Institute of Physics 1075 



1076 M Portilla 

The world lines of each particle x ~ ( T , )  are parametrised with the proper time of 
special relativity given by: 

(1.4) 

(1.5) 

P 1/2  dT, = [ q , ~  dxP dx, ] . 
The derivatives with respect to r will be represented by a point 

. O L  up = dxf/dr ,  = x , ,  

in such a way that 

qapupu? = 1,  q,pupLi? = 0. (1.6) 

(ab)  = q*pa "b 0, 

The following agreements will also be used: 

a s =- 
ax:' 

(1.7) P a" = qapa , 

The laws of motion (Havas and Goldberg 1962) of the first and second order are 

(1.8) 

respectively 

(d/d~,){iMl(ul,  + i g w p ~ P ) + z ~ ~ u l c r ~ = ~  iMat l ,  igpufuP, 

(d/dTI )[iM + igw& P + 2gwpu f ) + 2 M  (utw + i g d  f ) + sM'u,,I 

= :[&f, a,, lg,uufuP +2M,  a,, lgpuufu7+ 1 ~ 1  ad,, 2 g p a ~ f ~ 7 1 ,  (1.9) 

where 

lM, = ml(constant), 

3 ~ ,  = - im ,  g,puPu? + i m , ( l g w p ~ P ~ ~ ) Z + 3 ~ I .  

zM, = - i m ,  l g a p U P U f + Z C l ,  
(1.10) 

2C, and 3C, are constants of integration. 
The equations of motion are obtained by substituting the solutions lgwv, zgrv. . . of 

the approximate field equations in the laws of motion. The constants of integration 2C, 
and 3Cl are chosen in such a way that they do not appear infinite on the world lines of the 
particles. (In reality all this could only be achieved by the first order equations.) 

The retarded and advanced solutions of the first order field equations, 

Olywv = - 1 6 ~ G  mjuj,uju L ~ ' ~ ' ( x  - x j ( r j ) )  dTj, 
(1 .11)  

are 

(1.12) 

where E = -1 for the retarded solution and +1 for the advanced solution, and all the 
corresponding magnitudes for the particle ( j ) ,  are calculated at the point of intersection 
of its world line with the past cone traced from x w  if E = -1 ,  or advanced if E = +l .  

The time-symmetric solution is: 

(1.13) 

The equations of motion of the first order, retarded and advanced, contain similar 
terms to the radiation-reaction terms of electrodynamics. As it is not the purpose of 

1gl"l= 1 ( 1 g 2  + 1g,u ( + 1 )  ). 
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this work to enter into a discussion of radiation phenomena we shall start from the 
time-symmetric equation of motion. 

For an isolated system of two particles (i ,  j )  the equations are 

(1.16) 

with 

x ”  = x f  -x f ,  7 7 1  = +I ,  77, = -1 .  

E = -1 for the retarded solution and + 1  for the advanced solution. 

In the expressions igzv; U,, and (xu,)  they are calculated in the retarded position if 
E = -1  or in the advanced position if E = + l .  

The equation of motion for the particle ( j )  is obtained by substituting i f o r j  in (1.14) 
and (1.16). 

In 8 2, we shall see that the equation (1.14) can be put in the form 

du,,/dr, = i ( W ! i 1 ) ( 2 ,  U,, GI,  E,, 2,)+ W : ; ” ( i ,  U,, d,, E,, g,)). (1.17) 

.?”, i,”, 2,” and i@, U’,”, Z,” are the relative position, 4-‘velocity’ and acceleration of ( j )  in 
the retarded and advanced positions respectively: 

,.a .p 
2” = x : ( r , ) - x , ” ( . r , , ) ,  if 77apx x = 0,  d.r, T,=T,,’ 

We note that the equations (1.17) are not independent. Contracting with u f ,  we obtain 
u f  dui,/dri = 0 and the functions Wl:’ are verified as identities: 

u?w:, =o,  E = *l. (1.18) 

Combined with the fact that these equations are Lorentz invariants, this allows us to 
interpret them within the framework of predictive mechanics (Droz-Vincent 1970, Bel 
1971). 

Thus it can be supposed that the interaction can be described by a predictive Lorentz 
invariant system (PS) 

(1.19) duf/d.r, = O ? ( x i  x ,  ui ui), 

where the accelerations must be a solution of the equations: 

(1.20), (1.21) 

and similar equations, obtained by permuting i and j .  
The equations of motion (1.17) are considered as supplementary conditions in order 

to determine the accelerations, in such a way that every solution of the PS (1.19) satisfies 
the equations of motion (1.17). 
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Let us briefly recall how this is done: If x :  = 4: (ri, x ,  U )  is a solution of the PS 
corresponding to the initial conditions ( x :  xg,  U: U;), all the magnitudes 2, fij, gj, x', Gj, 
ij can be written as functions of the variables (xp x p  up U:). @i:)(x,  U, Bi, ej )  are the 
functions resulting from the substitution of these in Wk).  

The functions $,, satisfy the equations 

and the supplementary conditions: 

(1.22), (1.23) 

(1.24) 
5igxu= - 6 7 ,  

Therefore c $ ~ ( T ~ ,  x ,  U )  will also be the solution of the equation of motion (1.17) if we 
choose O f  in such a way that 

(1.25) 

This equation can be solved within the framework of perturbation theory. If we write 

e t  = 4 [ctY) ,(x, U, ei, e,) + @tl+l), ( x ,  U, ei, e,)]. 

1 

and substitute in (1.25) we have 

(1.26) 

The equation is then ready for a recurrence calculation. To the first order we have 

(1.27) 

In this work in 0 2, we only determine 'el" and we do not attempt to calculate the 
superior terms "87, n > 1. We must note that only the series ZG" "e? corresponds to an 
equivalent predictive system to the equation of motion of Havas. To see why we do this, 
and the significance of the approximate predictive system 'e?, we see what will happen 
with the equations of motion of the superior order. Unfortunately, equations of the 
second order are as yet unobtainable. However, as the law of motion of the second 
order (1.9) differs from that of the first order (1.8) only in terms of the second order, it 
will be of the form 

n ~ - 1  n 8,  - -1 @(-1)w I (x, U, pet, q e , ) + " @ ~ + " w ( x ,  U, pel, 
with l c p ~ n - 1  and l c q s n - 1 .  

1 8 ,  , - 1 1  - - * [ +(-I), I ( x ,  U )  + ct!+l), ( x ,  U)]. 

(1.28) dut, 
d TI 

with xu = O(G2).  

-= f[w!;" + W!]:"I+x,(x, u1/, ;/, ri,, i/, . . .), 

So the predictive system associated with this equation will be 

e t  = G  1e?+G2281?+ . , . , (1.29) 
where the first term coincides with that obtained from the equation of the first order. 

Only the expressions "0 ;  for n > 1 will be different. Similarly, keeping in mind the 
laws of motion of superior order, the following could be concluded: 

The PS corresponding to an equation of motion to the order N :  
- 

eP=G'eP+GZ28P+ . . .  +GNN* e l  (1.30) 
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will have its N - 1 first expressions identical to those obtained from the equations of 
motion of lower order. 

In this way, at least formally, it is possible to determine a PS 

e;  = G" "e;, 
(where each "09 must be calculated from the equation of motion of the order N )  which 
has solutions in common with the exact equation of motion 

(1.31) 

where 

is a solution of the field equation 

R,, - 4 Rg,, = -8rGp,,. 

As a consequence, we interpret the PS of the first order calculated in 0 2 as an 
approximated PS corresponding to the exact equation of motion; it is for this reason that 
we abandon the attempt to calculate 2eP, which must be done from an equation of 
motion of the second order. 

2. An approximate predictive system for the two-body problem 

In predictive mechanics an isolated system of two point particles ( i ,  j )  is described by a 
system of differential equations of the second order: 

du 9 
dri 
-- - e : ( x i  xi ui U ~ ) ,  

where XP and x g  are the coordinates of the particles in Minkowski space. In order for 
the PS to be Lorentz invariant, we must express the accelerations 6: in the form 

e ;  = qiaixU + biiu; + biiug 

with 

x u  = , p  -.g. 7 ) i  = +1, 7)l = -1. 

a and b are functions of the invariants 

( X U i )  = 7)u@xuup, 

( U i U j )  = 7)u@U:up. 

2 e l 3  x =%fix x , 

( X U / )  = r ) , p X U U ~ ,  
(2.3) 

We take the metric tensor 7)up with the signature ( + l ,  -1, -1, -1). The accelerations 
must be the solutions of the equations 
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It is supposed that the accelerations can be developed in a power series of a coupling 
constant G : 

m 

e: = E  G" "e:, "e: = q ; ~ i X a  +"biiu: +"bi jU: ,  (2.6) 
1 

and substituting into (2.4) we have 

a 
ax Dj "Of = "A:, Dj = U:,, (2.7) 

where 

A: = 0, 1 

with 

(2.9) 

If we write 

"A: = qYAix: + "Biiuf + "BijuP 

the equations (2.4) and (2.5), supposing that they are satisfied order by order, give us 

(xu, )  "a, + "bil 
(uiuj) 

"6 . .  = - 

(2.10) 

(2.11) 

(2.12) 

The general solution can be written in two different forms ( E  = z t l )  (Bel e? a1 1973): 

( x u , )  

-vierl 
"a i (€ )  = "Ai d(xu,) + "a? ( r ,  si K ; E ) ,  

n b i i ( ~ ) =  ~ " " )  "Bii d(xuj)+"b:(rj si K ;  E ) ,  
-vw, 

(2.13) 

(2.14) 

% , ( E )  = - K - ' [ " a i ( e ) ( x u i )  + " b i i ( E ) ] ,  (2.15) 

where independent variables have been taken: 

K = ( U i U j ) ,  Sj = (XU,) - K ( X U j ) ,  

rj = [ - x 2 +  ( X U ~ ) ~ ] " ~ ( X U ~ ) .  

(2.16) 

" u : ( E )  and " b : ( ~ )  are arbitrary functions of ( K ,  rj, s i ) .  

the form 
Once the arbitrary functions have been chosen the general solution can be written in 

"U,  * A  " ~ i ( - l ) + ( l - A )  "ai(+l). (2.17) 

In particular taking A = 4 we have the solution 

"a, = ; ("a,(-l) + "Ui(+l). (2.18) 
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The following notation will be used 
x * = o  "ai(€; €1 = "aj(E)lsigxO=-cq,, 

"ai(€; -e>  = " U ~ ( E ) J ; ~ Z ~ ? = ~ ~ , .  

" a , (€ ;  E )  = " U T ( € ,  €1, 
"bij(€; € )  = "b; (€ ,  €). 

a, (€ )  = 'a%),  

% , i ( € )  = %E(€) .  

Taking into account (2.13) and (2.14) we have 

and remembering (2.8) we have 
1 

1081 

(2.19) 

(2.20) 

(2.21) 

3. A first-order predictive system for two particles in gravitational interaction 

The equation of motion (1.14) can be written in this way: 

+ (. . . similar terms with gh+pl) instead of g&" . . .) J. (3.1) 

Taking into account the definitions of iJ, Gj, ZJ we easily obtain, from the condition 
x = 0, sig x = -ql, that: 2 0 

dLi, ( i u j )  A 

with which can be calculated: 

where the magnitudes corresponding to the particles j are calculated in the retarded 
position if E = -1 or advanced position if E = +l.  Substituting into the equation of 
motion (3.1), the latter can be put into the form: 
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Let us now determine a PS equivalent to this equation. If it is supposed that 67 = 
XG" "07 we have to first order in G:  

1' Wl;' must be the solution of the equations 
Dj = 0, (3.8) 

u f  =o, (3.9) 

and fulfil the supplementary condition: 
1 *;:'€I = - 1 *!€' I ,  1x,2=0 s1gxO=-e?l, = W E  (3.10) 

The expressions for W!:), obtained directly from the equation of motion (3.1), are: 

If we write 

1 Wl:) = vi ' U :  ( E ,  E ) X ,  + 1 *  b i i  ( E ,  E ) u ~ ,  + 1 *  b i j  ( E ,  E)Uj,, (3.12) 

we shall have 

and 

0 But the equations (2.16) and the conditions x 2  = 0, sig x = -qi give 

(xui )  = -vierj, 

( X U i )  = sj - 7) iETjK,  

with which, substituting in (3.13) and (3.14), we have 

1 *  2K2-1  
U ,  ( E ,  E )  = - m , T ,  

ri  

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

If we also write '+{;) as 

Le:;) = VI l U i ( E ) X ,  + l b i i ( E ) U i C 1  + l b i j ( E ) U j ,  (3.18) 

the solution of the equations (3.8) and (3.9) with the supplementary condition (3.10) is 

(3.19) 
1 2K2+ 1 
a i ( € )  = -mi- 3 >  

T i  

(3.20) 
2K2+ 1 

'b i i (e )  = - v i m j T s i ,  
r ,  
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1 4KSj + (2K2- l ) ( X U j )  
b i j ( e )  = qimi 3 9 

T i  

with which 

1 - - 2K2+ 1 4KSI + (2K2 - l ) ( X U j )  
W,, - Timj - ~ x ,  - ~ s j u i , ,  + 3 ujw] [ ,,:,-, ri T i  

We note that they do not depend on E ,  that is 
1 - (-1) = 1 - ( + 1 j  Wi, Wi, . 

Substituting, finally, (3.22) in (3.7), we have the first-order predictive system: 

1083 

(3.21) 

(3.22) 

2k2-1 2 ~ ’ + 1  4 K S j  + ( 2 2  - l ) ( X U j )  
10?=,,.m. I I[ -- I.; x,-- 3 Sjui, + 3 Uj , ] .  (3.23) 

ri  r i  

4. Momentum and angular momentum to first order in G 

Following Bel and Martin (1979,  we shall determine the quadrivector momentum and 
the angular momentum, up to the first order in G, for two particles in gravitational 
interaction. 

In the first place we change the signature of 77,y in the equation (3.23). Therefore we 
now have : 

and the formulae (2.16) will be 

With Bel and Martin we substitute into the system (2.1) the accelerations (4.1) for 
another equivalent system: 

where 

with 

T? = -(rm). 

(4.4) 

(4.5) 

This system can be considered as the result of making the changes of parameter 
A i  = Ti/mi, Ai = rj /mj  in (2.1). 

To solve the system (4.3) we consider r?, r ;  as independent variables, and as 
( O i r i ) = O  and ( O j r j ) = O ,  r i ,  r j  are constants on the world lines of the particles. 
Identifying r?  and T; with m f  and m; we obtain the trajectories of the particles. 

2 2  
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From the equation (4.4) and taking into account (4.1) we obtain: 

k = -(7r;w,). 

h2 = qaghahP, I I ,  

It is convenient to use a new set of independent variables {/?, h2, z;, ti, T?, r;} .  

ha  = x u  - z i r ?  + z.=P 
(4.8) 

zj = qiK2[=:  ( x T ~ )  - /?(XW~)], A2 = /?' - =:=;. 
From the definitions (4.8) we can obtain 

(4.9) ~ ~ = h ~ - t ? ~ ; - t j ~ ,  2 2  +2/?t;zj, 
( m i )  = r/i[-7T:zl + k t j ] ,  

and taking into account (4.7-9) we have: 

It is also convenient to express the accelerations as a linear combination of the vectors: 

(4.1 1) 2 * a  2 a  ha  =xa-zi~TTp( +ti=;, tp = I T j  7 l p -  K T j ,  t ;  = Ti " I  - /??T;, 

which have the following properties: 

(h7r') = (h7rj) = 0 ,  2 (ti'rri) = (t i=;) = 0 ,  ( t i=,)  = (firi) = A 

The consequence of this is that i f f  is a function of 
2 2  (2, h 2 ,  ~ , 7  zj, vi 9 r i  I, 

it can be verified that 

a a f  a f  
ax: at,' ax, a t ,  TI,=-. 

=;-=- af  a f  

(4.12) 

(4.13) 

If we write the equation (4.6) in the form 

69 = qiajxa + biiv? + bi,.rrg (4.14) 

and if we make the change of base as indicated in (3.1 1) we easily obtain 

e*? = qiajha + lilt;, 

I;, = 7 (b,, - aiz,). 
1 

=i 

(4.15) 
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Taking into account (4.6) we obtain from (4.14) and (4.15): 

i2  -I- A2 4 2 ~ : ~ ;  + 2 A 2 - 3 t 3  zI “ 6: = -t),- h“ + 2 3  xt,, 
v,f r I  rl 

(4.16) 

The expression (4.16) is the starting point in obtaining the momentum and angular 
momentum, but before continuing we shall recall the definitions and methods of 
calculation: 

Momentum must be an invariant vector under the PoincarC group satisfying 

aPw aPw 
ax; a r :  

,p-+ e;- = 0.  (4,17) 

The angular momentum must be a second order tensor, skew-symmetric, invariant 
under the Lorentz group and of the form 

Furthermore the following asymptotic conditions are imposed: 

lim P” = PF, 
x 2 - p  

lim J w y  = J;” ,  
X 2 + = 3 P  

(4.18) 

(4.19) 

(4.20) 

(4.21) 

where PC and JC” are the momentum and the angular momentum of two free particles. 
That is to say P” and Jw” must coincide in the infinite past with the corresponding 
expressions for free particles. 

Iff is a function of the variables {2, h2, z,, z,, nf ,  r ; } ,  we define the infinite past limit, 
limx2+mpf = fo as follows: 

(b) l imf=fo.  
h2+m 
V r , ,  2, 

(4.22) 

(4.23) 

The method of solving the equations (4.17, 18, 19) is based on the following result: 
If some functions of the phase-space {4P 4 f  p p  p , ” }  are chosen, such as 4 ;  -xp  and 

p p ,  which are invariant vectors under the PoincarC group and solutions of the equations 

(4.24) 

(4.25) 

(4.26) 

(and the similar equations obtained by permuting i and j )  then the following expressions 
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are solutions of the equations (4.17, 18,19): 

P& = p y + p r ,  
Jw"=qYpY-qV I F ,  ?+q? , P I  Y-qY ,Pi9 @ 

and if furthermore we require the asymptotic conditions: 

lim q ? = x ? ,  

lim P ? = V ? ,  

x 2 - m p  

x2+mP. 

(4.27) 

(4.28) 

(4.29) 

(4.30) 

then (4.27) and (3.28) have the asymptotic behaviour described in (3.20,21). On the 
other hand, if Pr  is a solution of (4.24) and satisfies the asymptotic condition (4.30) it 
fulfils 

(PIP,) = (TlTJ. (4.31) 

The equations (4.24,25,26) are solved in the framework of perturbation theory. 

(4.32) 

To this end we substitute in these equations the following expressions: 
1 P? = V ?  + G[v, ahP + l ~ , l f $ l ,  

q f  = x f + G [ q ,  ly,hP+lY,rt~+lY,lt$].  (4.33) 

(in (4.32) no parallel vector to tf appears due to the condition (4.31) being satisfied.) By 
substituting (4.32) in the equation (4.24) the following equations are obtained: (We 
resolve order by order and take into account the properties (4.13)): 

(4.34) 

(4.35) 

Taking into account (4.15, 16) we obtain the expressions for 'ai and ' l ,  into which the 
previous equations are converted 

1 
-- - 0. 

-- a pll  4 k V f 4  + ii2 - 3k2 _.  Z, alCL1, 

82, Vl VI $7 ' 821 
2 3  

- -  

The solution of (4.36) which satisfies the asymptotic conditions (4.30) is 

a, =- 

1 4 2 ~ : ~ :  + k A2 - 3g3 2 - 32 A2 
A 2 ~ f ~ l ? l  ' 

CL,, = - 

(4.36) 

(4.37) 

(4.38) 

(4.39) 

Substituting (4.38,39) in (4.32), and taking into account (4.27) we obtain the 
quadrivector momentum: 

P a = . r r f + r y + G  G3-3kA2 t ;  + k 3 - 3 ~ A 2  r : ] .  (4.40) 
A2V;Vjfj A2V:Vi?i 
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The functions q:, are similarly determined. On substituting (4.33) in (4.25,6) we 
obtain: 

(4.41) 

(4.42) 

(4.43) 

As in the case of the electromagnetic interaction (Bel and Martin 1975) the previous 
equations do not allow for a solution with asymptotic behaviour (4.29), however, there 
exist solutions which satisfy a weaker condition: 

lim x-'(qP -xP) = 0. 
X 2 + C O P  

The solutions of (4.41,42,43) which fulfil conditions (4.44) are the following: 

(4.44) 

(4.45) 

(4.46) 

where vc, v: are functions of h 2 ,  L, rf, r ;  such that 
-1 * lim h-'vE =0 ,  lim h v i ,  = O .  

xZ+mp xz+mp 

Substituting in (4.33) the expressions (4.45,46,47) we obtain: 

(4.48) 

(4.49) 

Substituting (4.49) in (4.28) the angular momentum is obtained, but we shall not give its 
explicit expression which depends on the arbitrary functions Y E ,  v?. However, we shall 
give the intrinsic angular momentum expression, which does not depend on any 
arbitrary function. 

The intrinsic angular momentum is defined by 

(4.50) 

Substituting (4.27,28,32,33) into (4.50) and maintaining only first-order terms, we 
obtain 

(4.51) = ~ Q P . \ K  W" = W," + G' Wqa, X P ~ I A ~ J ~ ,  

W=M-'[ 'y ,  + I ? ,  - z 1  la, -2, 'aJ + ( A 2 M - 2 - < ) ( 1 ~ , J  + 'pJ I ) ] ,  

M 2  = 77: + r:  +2L, 
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and taking (4.38,39,45) into account we have 

(4.52) 

5. Gravitational energy and 3-accelerations 

In order to interpret the results of the previous section it is convenient to consider the 
tridimensional predictive system associated with every invariant PS (Bel and Martin 
1975). 

The Hamiltonian, and energy, of the system are defined as: 

H = -Po, (5.1) 

where Po means that in the expression for PO given in (4.40) the following substitutions 
must be made: 

IT .  2 2  = m .  
xp =xp = t ,  I ,  

s dx: 
V I  =- 

dt * 

We calculate the energy in the rest frame of the particles j :  

and taking into account (4.40, 1, 2) and (5.2) we obtain 

1x1 = ((x')2 + (X2)* + (x3)2)1'2. 

If the particle i is also at rest this expression reduces to 

mim, H = mi +mi - G- 
1x1 

which coincides with the gravitational energy in Newtonian mechanics. 
It is easy to see that the energy of interaction ( H  - T? -mi) is negative for 

4 < vPc, 

TP = x:, 

zero for 

(5.2) 

(5.5) 
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and positive for 
0 0  

T l  > f l 1 . 2 ,  

with n-7, = (i)1/2mi, corresponding to a speed v i  = 0 . 5 7 7 ~ .  
The expression (5.4) must coincide in some way with the energy of a particle in the 

constant gravitational field created by a body with spherical symmetry. 
The energy of a particle in a constant gravitational field is given by: 

5 =Po = mjgoo(dxO/ds). (5 .6)  

We substitute in (5.6) the Schwarzschild metric in harmonic coordinates (Fock 1959, 
Hirondel 1974): 

r-ro r+ro  
r + ro r - ro 

ds =- dt  - - dr2 - ( r  + ro)2(d82 +sin2 8 d42) ,  

ro = Gmj.  

From (5.7) we obtain 

r - ro 
goo = - r+ro’ r - ( r  + ro)’(e2 + sin2 e&’) 

(5.7) 

where r = dr/dt, e = de/dt, & = d4/dt, t = xo. Expanding (5.8) in powers of ro and 
retaining only terms to first order in ro we have: 

(5 .9)  
goo = 1 - 2r0/r, 

(ds/dr)2 = 1 - i2-r2(e2+sin2 8&2)-2(ro/r)[l + i2+r2(e2+s in2  

Making the change of coordinates 

x = r sin 8 cos 4, 
z = r cos 8, 

y = r sin 8 sin 4, 
t = t. 

(5.9) can be written in the form: 

goo = 1 - 2r0/r, 

(ds/dt)2 = 1 - U’ - 2(ro/r)(l + v 2 ) ,  

U 2  = i 2 +  y 2 + 2 2 ,  

2 2 2 2  r = x  + y  + z .  

From (5.11) we easily obtain 

dt/ds = (1 - u ’ ) ~ / ~ (  1 +- 

(5.10) 

(5.11) 

(5.12) 

Now substituting (5.12) and the expression of goo, given in (5.11), in (5.6) we have: 

2 1 /2  and if we put = m i / ( l  - v i  ) (5.13) can be written in the form 

(5.13) 

(5.14) 
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which coincides with the expression (5.4), giving the energy of the system if we add the 
rest energy of the particle which creates the field. 

Finally from '09 given by (4.1) we can get the 3-accelerations up to the first order in 
G, having in mind the relation 

(5.15) 2 1  1 0  
a :  = (1 - u i  )( O:Iti=+- ei l t a = r j ~ Y ) ,  K = 1, 2 ,  3, 

a l  = d2xl/dt. 

If (5.15) is expanded in powers of ( u / c ) ,  retaining only the second-order terms we 
obtain 

(5.16) 

These accelerations coincide with those given by Einstein, Infeld and Hoffman, except 
the second-order term in G: 

G2mimi(5mi +4mj) 
X. i X t 4  
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